Um filtro digital fácil de usar A média móvel exponencial (EMA) é um tipo de filtro de resposta de impulso infinito (IIR) que pode ser usado em muitas aplicações DSP incorporadas. Requer apenas uma pequena quantidade de RAM e poder de computação. O que é um Filter Filters vem em formas analógicas e digitais e existe para remover freqüências específicas de um sinal. Um filtro analógico comum é o filtro RC de baixa passagem mostrado abaixo. Os filtros analógicos são caracterizados pela resposta de freqüência que é o quanto as freqüências são atenuadas (resposta de magnitude) e deslocadas (resposta de fase). A resposta de freqüência pode ser analisada usando uma transformada de Laplace que define uma função de transferência no domínio S. Para o circuito acima, a função de transferência é dada por: Para R equivale a um quilo-ohm e C é igual a um microfarad, a resposta de magnitude é mostrada abaixo. Observe que o eixo dos x é logarítmico (cada marca é 10 vezes maior do que a última). O eixo y está em decibéis (que é uma função logarítmica da saída). A freqüência de corte para este filtro é de 1000 rads ou 160 Hz. Este é o ponto em que menos de metade do poder em uma determinada freqüência é transferida da entrada para a saída do filtro. Os filtros analógicos devem ser usados em projetos embutidos quando se mora um sinal usando um conversor analógico para digital (ADC). O ADC apenas captura freqüências que são até metade da freqüência de amostragem. Por exemplo, se o ADC adquire 320 amostras por segundo, o filtro acima (com uma freqüência de corte de 160Hz) é colocado entre o sinal ea entrada ADC para evitar aliasing (que é um fenômeno onde as freqüências mais altas aparecem no sinal amostrado como Frequências mais baixas). Filtros digitais Os filtros digitais atenuam as freqüências em software em vez de usar componentes analógicos. Sua implementação inclui amostragem dos sinais analógicos com um ADC, em seguida, aplicando um algoritmo de software. Duas abordagens de design comuns para filtragem digital são filtros FIR e filtros IIR. Filtros FIR Filtros finitos de resposta a impulsos (FIR) usam um número finito de amostras para gerar a saída. Uma média móvel simples é um exemplo de um filtro FIR de baixa passagem. As freqüências mais altas são atenuadas porque a média suaviza o sinal. O filtro é finito porque a saída do filtro é determinada por um número finito de amostras de entrada. Como exemplo, um filtro de média móvel de 12 pontos acrescenta as 12 amostras mais recentes, em seguida, divide-se por 12. A saída dos filtros IIR é determinada por (até) um número infinito de amostras de entrada. Filtros IIR Os filtros Infinite Impulse Response (IIR) são um tipo de filtro digital onde a saída é inifinetelyin teoria de qualquer forma influenciada por uma entrada. A média móvel exponencial é um exemplo de um filtro IIR de passagem baixa. Filtro médio de movimentação exponencial Uma média móvel exponencial (EMA) aplica pesos exponenciais a cada amostra para calcular uma média. Embora isso pareça complicado, a equação conhecida em linguagem de filtragem digital como a equação de diferença para calcular a saída é simples. Na equação abaixo, y é a saída x é a entrada e alfa é uma constante que define a freqüência de corte. Para analisar como esse filtro afeta a freqüência da saída, a função de transferência do domínio Z é usada. A resposta de magnitude é mostrada abaixo para alfa igual a 0,5. O eixo dos e é, novamente, mostrado em decibéis. O eixo dos x é logarítmico de 0,001 a pi. A freqüência do mundo real se correlaciona com o eixo x, sendo zero a tensão CC e pi igual a metade da frequência de amostragem. Todas as frequências que são superiores à metade da frequência de amostragem serão alias. Como mencionado, um filtro analógico pode garantir que praticamente todas as freqüências no sinal digital estão abaixo da metade da freqüência de amostragem. O filtro EMA é benéfico em projetos incorporados por dois motivos. Primeiro, é fácil ajustar a freqüência de corte. Diminuir o valor do alfa diminuirá a frequência de corte do filtro como ilustrado pela comparação do gráfico alfa 0.5 acima com o gráfico abaixo, onde alfa 0.1. Em segundo lugar, o EMA é fácil de codificar e requer apenas uma pequena quantidade de energia e memória informática. A implementação do código do filtro usa a equação de diferença. Existem duas operações de múltiplas operações e uma operação de adição para cada saída. Isso ignora as operações necessárias para arredondar matemática de ponto fixo. Somente a amostra mais recente deve ser armazenada na RAM. Isto é substancialmente menor do que o uso de um filtro de média móvel simples com N pontos que requer N operações de multiplicação e adição, bem como N amostras a serem armazenadas na RAM. O código a seguir implementa o filtro EMA usando matemática de ponto fixo de 32 bits. O código abaixo é um exemplo de como usar a função acima. Os filtros de conclusão, tanto analógicos como digitais, são uma parte essencial dos projetos incorporados. Eles permitem aos desenvolvedores se livrar de freqüências indesejadas ao analisar a entrada do sensor. Para que os filtros digitais sejam úteis, os filtros analógicos devem remover todas as frequências acima da metade da frequência de amostragem. Os filtros digitais IIR podem ser ferramentas poderosas no design incorporado, onde os recursos são limitados. A média móvel exponencial (EMA) é um exemplo de um filtro que funciona bem em projetos incorporados por causa da baixa memória e requisitos de energia de computação. Filtro Médico Mínimo (filtro MA) Carregando. O filtro de média móvel é um filtro Low Pass FIR simples (Resposta de Impulso Finito) comumente usado para suavizar uma matriz de sinal de dados amostrado. É preciso M amostras de entrada de cada vez e leva a média dessas M-amostras e produz um único ponto de saída. É uma estrutura simples de LPF (Low Pass Filter) que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M), a suavidade da saída aumenta, enquanto as transições acentuadas nos dados são tornadas cada vez mais contundentes. Isso implica que este filtro possui uma excelente resposta ao domínio do tempo, mas uma resposta de freqüência fraca. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos de computação envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro atua como um filtro de passagem baixa (com resposta de domínio de freqüência fraca e uma resposta de domínio de tempo bom). Código Matlab: o código Matlab seguinte simula a resposta do domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Resposta de Domínio de Tempo: no primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é ruidosa e nosso objetivo é reduzir o ruído. A próxima figura é a resposta de saída de um filtro de média móvel de 3 pontos. Pode deduzir-se da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Aumentamos os toques de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é retratado na próxima figura. Aumentamos as torneiras até 101 e 501 e podemos observar que mesmo - embora o ruído seja quase zero, as transições são desviadas drasticamente (observe a inclinação de cada lado do sinal e compare-os com a transição ideal da parede de tijolos em Nossa contribuição). Resposta de frequência: a partir da resposta de freqüência, pode-se afirmar que o roll-off é muito lento ea atenuação da faixa de parada não é boa. Dada esta atenuação da faixa de parada, claramente, o filtro de média móvel não pode separar uma faixa de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em desempenho fraco no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passagem baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: livros recomendados: barra lateral primária
No comments:
Post a Comment